II‐VI announced its double-junction vertical cavity surface-emitting laser (VCSEL) arrays, the first of its multi-junction VCSEL array platforms for next-generation world-facing 3D sensing applications.
The growing adoption of 3D sensing in several markets, including in consumer electronics, automotive, and industrial, is driving the demand for depth sensors with longer and wider range, lower power consumption, smaller size, and lower cost. II-VI’s new VCSEL arrays are based on a double-junction technology that doubles the power output per VCSEL emitter and improves the power conversion efficiency to 56%, compared with 46% in existing single-junction technology.

This can be leveraged for a number of differentiating benefits, including higher output power to sense farther and wider, reduced battery power consumption, and smaller size to achieve lower cost and to enable more inconspicuous designs.
“We have developed over the years strong partnerships with our customers, closely collaborating on the development of long-term technology and product roadmaps aimed at providing breakthrough solutions and continuously elevating user experience in 3D sensing,” said Dr. Julie Eng, Sr. Vice President, Optoelectronic & RF Devices Business Unit.
“A few years ago, we successfully scaled our vertically integrated GaAs optoelectronics technology platform from 3-inch to 6-inch, which enabled us to shorten our development cycles and introduce new products to meet aggressive market windows. We are now once again evolving the platform, this time with a leap to double-junction technology that we believe will unlock exciting new use cases, such as farther depth of sensing in world-facing applications and seamless integration into consumer products for AR and VR applications.”
II-VI’s double-junction VCSEL arrays emit at 940 nm, and their steep slope efficiencies enable very short pulses of very high peak powers. The VCSEL arrays are designed for low-cost non-hermetic packaging and, like the single-junction arrays, can be reliably and cost-effectively scaled in total power by increasing the number of emitters per chip. They can also be produced in high volume on II-VI’s vertically integrated 6-inch platform.
II-VI’s broad portfolio of products for 3D sensing includes diffractive optical elements (DOEs) and thin-film filters that are produced at wafer-scale for high-volume applications. DOE flat lenses and lenslet arrays collimate, focus, or transform beams from VCSEL arrays. DOE diffusers homogenize the output of VCSEL arrays and produce a uniform field of illumination. DOE splitters separate an input beam into multiple output beams. Filters are used to improve the signal-to-noise ratio of the image sensor array. II-VI VCSEL arrays are available as chips or integrated with DOEs in surface-mount technology packages.
II-VI will showcase its broad product line of lasers and optics for 3D sensing at the 2021 SPIE Photonics West Digital Forum, March 6-11, 2021.









![[심층분석] AI 데이터센터가 삼킨 메모리 시장, ‘슈퍼사이클’ 넘어 ‘구조적 격변’ 시작됐다 [심층분석] AI 데이터센터가 삼킨 메모리 시장, ‘슈퍼사이클’ 넘어 ‘구조적 격변’ 시작됐다](https://icnweb.kr/wp-content/uploads/2026/01/memory-market-3player-1024web.png)
![[심층기획] 클라우드를 넘어 ‘현장’으로… 인텔, 산업용 엣지 AI의 판을 흔들다 [심층기획] 클라우드를 넘어 ‘현장’으로… 인텔, 산업용 엣지 AI의 판을 흔들다](https://icnweb.kr/wp-content/uploads/2026/01/Perplexity-image-Edge-AI-industry1b-700web.png)
![[심층기획] AI가 다시 쓴 글로벌 혁신의 방정식… “속도전 끝났다, ‘신뢰’와 ‘질’로 승부하라” [심층기획] AI가 다시 쓴 글로벌 혁신의 방정식… “속도전 끝났다, ‘신뢰’와 ‘질’로 승부하라”](https://icnweb.kr/wp-content/uploads/2026/01/Gemini_Generated_Image_100-innovation-1024web.png)






![[피플] “생성형 AI 넘어 ‘피지컬 AI’의 시대로… 2026 하노버메세, 제조 혁신의 해법 제시” [피플] “생성형 AI 넘어 ‘피지컬 AI’의 시대로… 2026 하노버메세, 제조 혁신의 해법 제시”](https://icnweb.kr/wp-content/uploads/2026/02/R41_0775-HM26-von-press-900web.png)
![[이슈] 스마트 제조의 방패 ‘IEC 62443’, 글로벌 산업 보안의 표준으로 우뚝 [이슈] 스마트 제조의 방패 ‘IEC 62443’, 글로벌 산업 보안의 표준으로 우뚝](https://icnweb.kr/wp-content/uploads/2025/07/OT-security-at-automotive-by-Gemini-Veo-1024x582.png)
![[기자칼럼] 제어반의 다이어트, ‘워크로드 컨버전스’가 답이다… 엔지니어를 위한 실전 팁 7가지 [기자칼럼] 제어반의 다이어트, ‘워크로드 컨버전스’가 답이다… 엔지니어를 위한 실전 팁 7가지](https://icnweb.kr/wp-content/uploads/2026/01/generated-edge-AI-4-in-1-01-1024web.png)




![[그래프] 국회의원 선거 결과 정당별 의석수 (19대-22대) 대한민국 국회의원 선거 결과(정당별 의석 수)](https://icnweb.kr/wp-content/uploads/2025/04/main-image-vote-flo-web-2-324x160.jpg)






